Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(5): 2260-2266, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36812149

RESUMO

BACKGROUND: Development of accurate pest monitoring systems is essential for the establishment of integrated pest management strategies. Information about the pest behavior during the colonization process, as well as the sex and reproductive status of the colonizing population often are lacking and hinder their development. The cabbage stem flea beetle (CSFB, Psylliodes chrysocephala) can cause the complete destruction of oilseed rape crops (OSR, Brassica napus). In the present study, the colonization process of OSR fields by the CSFB was studied. RESULTS: More individuals were caught on the outward facing side of the traps than the side of the trap facing towards the crop at the field border and catches were higher on the trapping units at the center of the field than at its border, suggesting that more beetles were entering than leaving the crop. Catches were higher on lower traps placed near to the crop than on those positioned further from the ground and also were higher during the day than late afternoon and night. The sex-ratio of individuals caught was skewed towards males and sexual maturity was acquired for females during the experiment. Integration of sampling data with local meteorological data showed that the catches correlated mostly with air temperature and relative humidity. CONCLUSION: This study provides new information about the dispersion of the CSFB in OSR fields during the colonization process, and highlights correlations between local meteorological factors and activity of the CSFB, and represent a new step towards implementing monitoring strategies against this pest. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Brassica napus , Brassica , Besouros , Sifonápteros , Animais , Produtos Agrícolas
2.
Plant Sci ; 331: 111690, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965631

RESUMO

The Optimal Defense Theory (ODT) predicts that the distribution of defenses within a plant should mirror the value and vulnerability of each tissue. Although the ODT has received much experimental support, very few studies have examined defense allocation among reproductive tissues and none assessed simultaneously how these defenses evolve with age. We quantified glucosinolates in perianths, anthers and pistils at different bud maturity stages (i.e., intermediate flower buds, old flower buds and flowers) of undamaged and mechanically damaged plants of an annual brassicaceous species. The youngest leaf was used as a reference for vegetative organs, since it is predicted to be one of the most defended. In line with ODT predictions, reproductive tissues were more defended than vegetative tissues constitutively, and within the former, pistils and anthers more defended than perianths. No change in the overall defense level was found between bud maturity stages, but a significant temporal shift was observed between pistils and anthers. Contrary to ODT predictions, mechanical damage did not induce systemic defenses in leaves but only in pistils. Our results show that defense allocation in plant reproductive tissues occurs at fine spatial and temporal scales, extending the application framework of the ODT. They also demonstrate interactions between space and time in fine-scale defense allocation.


Assuntos
Glucosinolatos , Folhas de Planta , Flores , Fatores Etários
3.
Biology (Basel) ; 11(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36552352

RESUMO

Chemical communication is very important in herbivorous insects, with many species being important agricultural pests. They often use olfactory cues to find their host plants at a distance and evaluate their suitability upon contact with non-volatile cues. Responses to such cues are modulated through interactions between various stimuli of biotic and abiotic origin. In addition, the response to the same stimulus can vary as a function of, for example, previous experience, age, mating state, sex, and morph. Here we summarize recent advances in the understanding of plant localization and recognition in herbivorous insects with a focus on the interplay between long- and short-range signals in a complex environment. We then describe recent findings illustrating different types of plasticity in insect plant choice behavior and the underlying neuronal mechanisms at different levels of the chemosensory pathway. In the context of strong efforts to replace synthetic insecticides with alternative pest control methods, understanding combined effects between long- and close-range chemical cues in herbivore-plant interactions and their complex environment in host choice are crucial to develop effective plant protection methods. Furthermore, plasticity of behavioral and neuronal responses to chemical cues needs to be taken into account to develop effective sustainable pest insect control through behavioral manipulation.

4.
Pest Manag Sci ; 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36309935

RESUMO

BACKGROUND: Improving crop resistance to insect herbivores is a major research objective in breeding programs. Although genomic technologies have increased the speed at which large populations can be genotyped, breeding programs still suffer from phenotyping constraints. The pollen beetle (Brassicogethes aeneus) is a major pest of oilseed rape for which no resistant cultivar is available to date, but previous studies have highlighted the potential of white mustard as a source of resistance and introgression of this resistance appears to be a promising strategy. Here we present a phenotyping protocol allowing mid-throughput (i.e., increased throughput compared to current methods) acquisition of resistance data, which could then be used for genetic mapping of QTLs. RESULTS: Contrasted white mustard genotypes were selected from an initial field screening and then evaluated for their resistance under controlled conditions using a standard phenotyping method on entire plants. We then upgraded this protocol for mid-throughput phenotyping, by testing two alternative methods. We found that phenotyping on detached buds did not provide the same resistance contrasts as observed with the standard protocol, in contrast to the phenotyping protocol with miniaturized plants. This protocol was then tested on a large panel composed of hundreds of plants. A significant variation in resistance among genotypes was observed, which validates the large-scale application of this new phenotyping protocol. CONCLUSION: The combination of this mid-throughput phenotyping protocol and white mustard as a source of resistance against the pollen beetle offers a promising avenue for breeding programs aiming to improve oilseed rape resistance. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

5.
Mol Ecol Resour ; 22(5): 1954-1971, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35146928

RESUMO

Belowground herbivores are overseen and underestimated, even though they can cause significant economic losses in agriculture. The cabbage root fly Delia radicum (Anthomyiidae) is a common pest in Brassica species, including agriculturally important crops, such as oilseed rape. The damage is caused by the larvae, which feed specifically on the taproots of Brassica plants until they pupate. The adults are aboveground-living generalists feeding on pollen and nectar. Female flies are attracted by chemical cues in Brassica plants for oviposition. An assembled and annotated genome can elucidate which genetic mechanisms underlie the adaptation of D. radicum to its host plants and their specific chemical defences, in particular isothiocyanates. Therefore, we assembled, annotated and analysed the D. radicum genome using a combination of different next-generation sequencing and bioinformatic approaches. We assembled a chromosome-level D. radicum genome using PacBio and Hi-C Illumina sequence data. Combining Canu and 3D-DNA genome assembler, we constructed a 1.3 Gbp genome with an N50 of 242 Mbp and 6 pseudo-chromosomes. To annotate the assembled D. radicum genome, we combined homology-, transcriptome- and ab initio-prediction approaches. In total, we annotated 13,618 genes that were predicted by at least two approaches. We analysed egg, larval, pupal and adult transcriptomes in relation to life-stage specific molecular functions. This high-quality annotated genome of D. radicum is a first step to understanding the genetic mechanisms underlying host plant adaptation. As such, it will be an important resource to find novel and sustainable approaches to reduce crop losses to these pests.


Assuntos
Brassica , Dípteros , Animais , Produtos Agrícolas , Dípteros/genética , Feminino , Herbivoria , Larva/genética
6.
Oecologia ; 197(1): 179-187, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34363525

RESUMO

The relationship between female oviposition preference and offspring performance has been a question of special interest in the study of host plant selection by phytophagous insects. The Preference-Performance Hypothesis (PPH) is one of the main hypotheses proposed to explain this relationship, stating that females should preferentially lay eggs on plants providing the best larval development. The PPH has been extensively tested on aboveground insects but its application to species with belowground larvae is still mostly unknown. In this study, the PPH was quantitatively tested in an above-belowground insect, the cabbage root fly Delia radicum. Female oviposition preference and larval performance were estimated on three brassicaceous species (Brassica oleracea, Brassica rapa, and Sinapis alba) as well as between four cultivars of B. rapa and four cultivars of S. alba. Larval performance was estimated through their survival and through three life-history traits (LHT) of emerging adults. The PPH was supported at the intraspecific scale but only in B. rapa and for some, but not all, of the life-history traits. No support for the PPH was found in S. alba as well as at the interspecific scale. This study pleads for the integration of insects with both above- and belowground life stages in the preference-performance debate. Moreover, it raises the importance of measuring several variables to estimate larval performance and to test the PPH quantitatively, both at the plant intraspecific and interspecific scales, before drawing general conclusions.


Assuntos
Brassica , Oviposição , Animais , Insetos , Larva , Sinapis
7.
Microorganisms ; 9(6)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208681

RESUMO

Facultative intracellular symbionts like the α-proteobacteria Wolbachia influence their insect host phenotype but little is known about how much they affect their host microbiota. Here, we quantified the impact of Wolbachia infection on the bacterial community of the cabbage root fly Delia radicum by comparing the microbiota of Wolbachia-free and infected adult flies of both sexes. We used high-throughput DNA sequencing (Illumina MiSeq, 16S rRNA, V5-V7 region) and performed a community and a network analysis. In both sexes, Wolbachia infection significantly decreased the diversity of D. radicum bacterial communities and modified their structure and composition by reducing abundance in some taxa but increasing it in others. Infection by Wolbachia was negatively correlated to 8 bacteria genera (Erwinia was the most impacted), and positively correlated to Providencia and Serratia. We suggest that Wolbachia might antagonize Erwinia for being entomopathogenic (and potentially intracellular), but would favor Providencia and Serratia because they might protect the host against chemical plant defenses. Although they might seem prisoners in a cell, endocellular symbionts can impact the whole microbiota of their host, hence its extended phenotype, which provides them with a way to interact with the outside world.

8.
Insects ; 11(6)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545796

RESUMO

Several important vegetable crops grown outdoors in temperate climates in Europe can be damaged by the root-feeding larvae of Diptera (Delia radicum, Delia floralis, Chamaepsila rosae, Delia platura, Delia florilega, Delia antiqua). Knowledge of pest insect phenology is a key component of any Integrated Pest Management (IPM) strategy, and this review considers the methods used to monitor and forecast the occurrence of root-feeding flies as a basis for decision-making by growers and the ways that such information can be applied. It has highlighted some current management approaches where such information is very useful for decision support, for example, the management of C. rosae with insecticidal sprays and the management of all of these pests using crop covers. There are other approaches, particularly those that need to be applied at sowing or transplanting, where knowledge of pest phenology and abundance is less necessary. Going forward, it is likely that the number of insecticidal control options available to European vegetable growers will diminish and they will need to move from a strategy which often involves using a single 'silver bullet' to a combination of approaches/tools with partial effects (applied within an IPM framework). For the less-effective, combined methods, accurate information about pest phenology and abundance and reliable decision support are likely to be extremely important.

9.
FEMS Microbiol Ecol ; 96(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32123899

RESUMO

Insect symbionts benefit their host and their study requires large spectrum antibiotic use like tetracycline to weaken or suppress symbiotic communities. While antibiotics have a negative impact on insect fitness, little is known about antibiotic effects on insect microbial communities and how long they last. We characterized the bacterial communities of adult cabbage root fly Delia radicum in a Wolbachia-free population and evaluated the effect of tetracycline treatment on these communities over several generations. Three D. radicum generations were used: the first- and second-generation flies either ingested tetracycline or not, while the third-generation flies were untreated but differed with their parents and/or grandparents that had or had not been treated. Fly bacterial communities were sequenced using a 16S rRNA gene. Tetracycline decreased fly bacterial diversity and induced modifications in both bacterial abundance and relative frequencies, still visible on untreated offspring whose parents and/or grandparents had been treated, therefore demonstrating long-lasting transgenerational effects on animal microbiomes after antibiotic treatment. Flies with an antibiotic history shared bacterial genera, potentially tetracycline resistant and heritable. Next, the transmission should be investigated by comparing several insect development stages and plant compartments to assess vertical and horizontal transmissions of D. radicum bacterial communities.


Assuntos
Antibacterianos , Microbiota , Animais , Antibacterianos/farmacologia , Bactérias/genética , RNA Ribossômico 16S/genética , Tetraciclina/farmacologia
10.
Insects ; 11(2)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079140

RESUMO

The development of integrated pest management strategies becomes more and more pressing in view of potential harmful effects of synthetic pesticides on the environment and human health. A promising alternative strategy against Delia radicum is the use of trap crops. Chinese cabbage (Brassica rapa subsp. pekinensis and subsp. chinensis) is a highly sensitive Brassicaceae species previously identified as a good candidate to attract the cabbage root fly away from other crops. Here, we carried out multi-choice experiments both in the laboratory and in field conditions to measure the oviposition susceptibilities of different subspecies and cultivars of Chinese cabbages as compared to a broccoli reference. We found large differences among subspecies and cultivars of the Chinese cabbage, which received three to eleven times more eggs than the broccoli reference in field conditions. In laboratory conditions, the chinensis subspecies did not receive more eggs than the broccoli reference. We conclude that D. radicum largely prefers to lay eggs on the pekinensis subspecies of Chinese cabbage compared to the chinensis subspecies or broccoli. Some pekinensis cultivars, which received over ten times more eggs than broccoli in the field, appear especially promising candidates to further develop trap crop strategies against the cabbage root fly.

11.
Insects ; 10(5)2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31058845

RESUMO

Early experience of olfactory stimuli associated with their host-plant complex (HPC) is an important driver of parasitoid foraging choices, notably leading to host fidelity. Mechanisms involved, such as peripheral or central modulation, and the impact of a complex olfactory environment are unknown. Using olfactometer assays, we compared HPC preference of Aphidius ervi Haliday (Hymenoptera:Braconidae) females originating from two different HPCs, either with the other HPC in close vicinity (complex environment) or without (simple environment). We also investigated antennal responses to volatiles differentially emitted by the two respective HPCs. In a simple environment, HPC of origin had an influence on olfactory choice, but the preferences observed were asymmetric according to parasitoid origin. Electroantennographic recordings revealed significant sensitivity differences for some of the tested individual volatiles, which are emitted differentially by the two HPCs. Besides, presence of an alternative HPC during early stages modified subsequent parasitoid preferences. We discuss how increased olfactory complexity could influence parasitoid host foraging and biological control in diversified cropping systems.

12.
J Invertebr Pathol ; 158: 24-31, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30193778

RESUMO

Wolbachia is an endocellular bacteria infecting arthropods and nematodes and is only transmitted vertically by females via the cytoplasm of the egg. It is often a manipulator of host reproduction, causing cytoplasmic incompatibility, thelytokous parthenogenesis, feminization or male killing, which all increase the proportion of infected females in the population. However, Wolbachia can modify life history traits of the host without causing the above phenotypes and each species illustrates the variability of relationships between this remarkably versatile symbiont and its many hosts. We have measured maternal transmission and the impact of a natural Wolbachia infection in the cabbage root fly Delia radicum, a major agricultural pest. We used a population that is polymorphic for the infection to ensure similar genetic and microbiome backgrounds between groups. Maternal transmission of the infection was 100% in our sample. We found no evidence of cytoplasmic incompatibility, thelytokous parthenogenesis, feminization nor male killing. Wolbachia infection significantly reduced hatch rate in infected eggs (by 10%) but improved larvo-nymphal viability sufficiently so that infected eggs nevertheless yielded as many adults as uninfected ones, albeit with a 1.5% longer total development time. Starved and infected ovipositing females suffered significantly reduced viability (20% higher mortality during a 3-day oviposition period) than uninfected females, but mortality was not higher in starved virgin females nor in starved males, suggesting that the energetic cost of the infection is only revealed in extreme conditions. Wolbachia had no effect on egg hatch time or offspring size. The apparently 100% vertical transmission and the significant but mutually compensating effects found suggest that infection might be nearly benign in this host and might only drift slowly, which would explain why the infection rate has been stable in our laboratory (approximately 50% individuals infected) for at least 30 generations.


Assuntos
Dípteros/microbiologia , Características de História de Vida , Wolbachia , Animais , Feminino , Masculino , Simbiose
13.
Environ Sci Pollut Res Int ; 25(30): 29868-29879, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28741205

RESUMO

The "push-pull" strategy aims at manipulating insect pest behavior using a combination of attractive and repulsive stimuli using either plants derived volatile organic compounds or insect host plant preferences. In a field experiment using broccoli as a crop, we combined in a "push-pull" context the oviposition deterrent effect of dimethyl disulfide and the attractive effect of a Chinese cabbage strip enhanced with Z-3-hexenyl-acetate. The push component dimethyl disulfide reduced Delia radicum L. (Diptera: Anthomyiidae) oviposition on broccoli by nearly 30%, and applying Z-3-hexenyl-acetate in the pull component of Chinese cabbage increased it by 40%. Moreover, pest infestation was 40% higher in Chinese cabbage compared to broccoli and parasitism by Trybliographa rapae Westwood (Hymenoptera: Figitidae) was four times higher on this trap plant. In addition, lab experiments confirmed that Chinese cabbage is a more suitable host plant than broccoli for the cabbage root fly. Taken together, our results demonstrate the technical possibility of using a push-pull strategy to manipulate the egg-laying behavior of D. radicum in the field.


Assuntos
Acetatos/farmacologia , Brassica/parasitologia , Dípteros/efeitos dos fármacos , Dissulfetos/farmacologia , Himenópteros/efeitos dos fármacos , Animais , Dípteros/fisiologia , Feminino , Himenópteros/fisiologia , Masculino , Oviposição/efeitos dos fármacos , Compostos Orgânicos Voláteis
14.
Insect Sci ; 24(6): 1045-1056, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28544806

RESUMO

Interactions between plants and phytophagous insects play an important part in shaping the biochemical composition of plants. Reciprocally plant metabolites can influence major life history traits in these insects and largely contribute to their fitness. Plant rhizospheric microorganisms are an important biotic factor modulating plant metabolites and adaptation to stress. While plant-insects or plant-microorganisms interactions and their consequences on the plant metabolite signature are well-documented, the impact of soil microbial communities on plant defenses against phytophagous insects remains poorly known. In this study, we used oilseed rape (Brassica napus) and the cabbage root fly (Delia radicum) as biological models to tackle this question. Even though D. radicum is a belowground herbivore as a larva, its adult life history traits depend on aboveground signals. We therefore tested whether soil microbial diversity influenced emergence rate and fitness but also fly oviposition behavior, and tried to link possible effects to modifications in leaf and root metabolites. Through a removal-recolonization experiment, 3 soil microbial modalities ("high," "medium," "low") were established and assessed through amplicon sequencing of 16S and 18S ribosomal RNA genes. The "medium" modality in the rhizosphere significantly improved insect development traits. Plant-microorganism interactions were marginally associated to modulations of root metabolites profiles, which could partly explain these results. We highlighted the potential role of plant-microbial interaction in plant defenses against Delia radicum. Rhizospheric microbial communities must be taken into account when analyzing plant defenses against herbivores, being either below or aboveground.


Assuntos
Biodiversidade , Brassica napus/metabolismo , Dípteros/crescimento & desenvolvimento , Oviposição , Microbiologia do Solo , Animais , Feminino , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia
15.
PLoS One ; 11(6): e0155392, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27258532

RESUMO

All animals are infected by microbial partners that can be passengers or residents and influence many biological traits of their hosts. Even if important factors that structure the composition and abundance of microbial communities within and among host individuals have been recently described, such as diet, developmental stage or phylogeny, few studies have conducted cross-taxonomic comparisons, especially on host species related by trophic relationships. Here, we describe and compare the microbial communities associated with the cabbage root fly Delia radicum and its three major parasitoids: the two staphylinid beetles Aleochara bilineata and A. bipustulata and the hymenopteran parasitoid Trybliographa rapae. For each species, two populations from Western France were sampled and microbial communities were described through culture independent methods (454 pyrosequencing). Each sample harbored at least 59 to 261 different bacterial phylotypes but was strongly dominated by one or two. Microbial communities differed markedly in terms of composition and abundance, being mainly influenced by phylogenetic proximity but also geography to a minor extent. Surprisingly, despite their strong trophic interaction, parasitoids shared a very low proportion of microbial partners with their insect host. Three vertically transmitted symbionts from the genus Wolbachia, Rickettsia, and Spiroplasma were found in this study. Among them, Wolbachia and Spiroplasma were found in both the cabbage fly and at least one of its parasitoids, which could result from horizontal transfers through trophic interactions. Phylogenetic analysis showed that this hypothesis may explain some but not all cases. More work is needed to understand the dynamics of symbiotic associations within trophic network and the effect of these bacterial communities on the fitness of their hosts.


Assuntos
Besouros/microbiologia , Dípteros/microbiologia , Animais , Biodiversidade , Dípteros/parasitologia , Microbiota
16.
J Chem Ecol ; 41(8): 696-707, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26271671

RESUMO

Plants are attacked by both above- and belowground herbivores. Toxic secondary compounds are part of the chemical defense arsenal of plants against a range of antagonists, and are subject to genetic variation. Plants also produce primary metabolites (amino acids, nutrients, sugars) that function as essential compounds for growth and survival. Wild cabbage populations growing on the Dorset coast of the UK exhibit genetically different chemical defense profiles, even though they are located within a few kilometers of each other. As in other Brassicaceae, the defensive chemicals in wild cabbages constitute, among others, secondary metabolites called glucosinolates. Here, we used five Dorset populations of wild cabbage to study the effect of belowground herbivory by the cabbage root fly on primary and secondary chemistry, and whether differences in chemistry affected the performance of the belowground herbivore. There were significant differences in total root concentrations and chemical profiles of glucosinolates, amino acids, and sugars among the five wild cabbage populations. Glucosinolate concentrations not only differed among the populations, but also were affected by root fly herbivory. Amino acid and sugar concentrations also differed among the populations, but were not affected by root fly herbivory. Overall, population-related differences in plant chemistry were more pronounced for the glucosinolates than for amino acids and sugars. The performance of the root herbivore did not differ among the populations tested. Survival of the root fly was low (<40%), suggesting that other belowground factors may override potential differences in effects related to primary and secondary chemistry.


Assuntos
Brassica/química , Dípteros/crescimento & desenvolvimento , Glucosinolatos/metabolismo , Herbivoria , Animais , Brassica/genética , Inglaterra , Larva/crescimento & desenvolvimento , Raízes de Plantas/química
17.
J Chem Ecol ; 41(4): 330-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25893791

RESUMO

Volatile Organic Compounds (VOCs) released by plants are involved in various orientation processes of herbivorous insects and consequently play a crucial role in their reproductive success. In the context of developing new strategies for crop protection, several studies have previously demonstrated the possibility to limit insect density on crops using either host or non-host plants that release attractive or repellent VOCs, respectively. The cabbage root fly, Delia radicum, is an important pest of brassicaceous crops for which control methods have to be implemented. Several studies have shown that plant odors influence cabbage root fly behavior, but only few VOCs have been identified so far. The present study aimed at selecting both plants and olfactory stimuli that could be used in the development of a "push-pull" strategy against the cabbage root fly. Olfactometer results revealed that plants belonging to the same family, even to the same species, may exhibit different levels of attractiveness toward D. radicum. Plants that were found attractive in behavioral observations were characterized by high release rates of distinct terpenes, such as linalool, ß-caryophyllene, humulene, and α-farnesene. This study represents a first step to identify both attractive plants of agronomic interest, and additional volatiles that could be used in the context of trap crops to protect broccoli fields against the cabbage root fly.


Assuntos
Brassicaceae/química , Dípteros/efeitos dos fármacos , Dípteros/fisiologia , Compostos Orgânicos Voláteis/farmacologia , Animais , Feminino , Odorantes , Controle Biológico de Vetores , Especificidade da Espécie
18.
J Chem Ecol ; 40(11-12): 1220-31, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25355636

RESUMO

Enhancing natural mechanisms of plant defense against herbivores is one of the possible strategies to protect cultivated species against insect pests. Host plant feeding stimulation, which results from phagostimulant and phagodeterrent effects of both primary and secondary metabolites, could play a key role in levels of damage caused to crop plants. We tested this hypothesis by comparing the feeding intensity of the pollen beetle Meligethes aeneus on six oilseed rape (Brassica napus) genotypes in a feeding experiment, and by assessing the content of possible phagostimulant and phagodeterrent compounds in tissues targeted by the insect (flower buds). For this purpose, several dozens of primary and secondary metabolites were quantified by a set of chromatographic techniques. Intergenotypic variability was found both in the feeding experiment and in the metabolic profile of plant tissues. Biochemical composition of the perianth was in particular highly correlated with insect damage. Only a few compounds explained this correlation, among which was sucrose, known to be highly phagostimulating. Further testing is needed to validate the suggested impact of the specific compounds we have identified. Nevertheless, our results open the way for a crop protection strategy based on artificial selection of key determinants of insect feeding stimulation.


Assuntos
Brassica napus/química , Brassica napus/genética , Besouros/fisiologia , Herbivoria , Controle Biológico de Vetores , Animais , Cromatografia Líquida , Feminino , Masculino
19.
Plant Cell Environ ; 36(3): 528-41, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22889298

RESUMO

While nectaries are commonly found in flowers, some plants also form extrafloral nectaries on stems or leaves. For the first time in the family Brassicaceae, here we report extrafloral nectaries in Brassica juncea. The extrafloral nectar (EFN) was secreted from previously amorphic sites on stems, flowering stalks and leaf axils from the onset of flowering until silique formation. Transverse sections at the point of nectar secretion revealed a pocket-like structure whose opening was surrounded by modified stomatal guard cells. The EFN droplets were viscous and up to 50% of the total weight was sugars, 97% of which was sucrose in the five varieties of B. juncea examined. Threonine, glutamine, arginine and glutamate were the most abundant amino acids. EFN droplets also contained glucosinolates, mainly gluconapin and sinigrin. Nectar secretion was increased when the plants were damaged by chewing above- and belowground herbivores and sap-sucking aphids. Parasitoids of each herbivore species were tested for their preference, of which three parasitoids preferred EFN and sucrose solutions over water. Moreover, the survival and fecundity of parasitoids were positively affected by feeding on EFN. We conclude that EFN production in B. juncea may contribute to the indirect defence of this plant species.


Assuntos
Herbivoria , Interações Hospedeiro-Parasita , Insetos/fisiologia , Mostardeira/fisiologia , Néctar de Plantas/fisiologia , Animais , Feminino , Fertilidade , Insetos/parasitologia , Mostardeira/anatomia & histologia , Mostardeira/química , Néctar de Plantas/química
20.
Phytochemistry ; 73(1): 42-50, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22019318

RESUMO

Induced responses to insect herbivory are a common phenomenon in the plant kingdom. So far, induced responses have mostly investigated in aerial plant parts. Recently it was found that root herbivore may also elicit both local and systemic responses affecting aboveground herbivores and their natural enemies. Using broccoli (Brassica oleracea subsp. italica L.) and turnip (Brassica rapa subsp. rapa L.), two cultivated brassicaceaous plants differing in their chemistry and morphology, we analysed the local and systemic induced responses triggered by Delia radicum L. damage, JA and SA application. We also assessed whether the root induction treatments affected D. radicum larval performance. Both D. radicum damage and JA induced changes in glucosinolate and sugar content as well as affected D. radicum performance, while SA application did not. Despite the uniform chemical responses, the effect on larval performance on broccoli and turnip plants was very different. On broccoli, JA root treatment reduced herbivore performance, whereas in turnips the same treatment enhanced it. JA- and D. radicum-induced responses followed similar patterns, which suggests that the JA signalling pathway is involved in root-induced responses to larval feeding. Glucosinolate induction cannot fully explain the differences found in the performance of D. radicum on the different species. Changes in other resistance factors might significantly contribute to the induced resistance in these brassicaceaeous species as well.


Assuntos
Brassica napus/metabolismo , Brassica/metabolismo , Dípteros/fisiologia , Glucosinolatos/metabolismo , Herbivoria/fisiologia , Animais , Ciclopentanos/metabolismo , Dípteros/efeitos dos fármacos , Dípteros/metabolismo , Herbivoria/efeitos dos fármacos , Larva , Oxilipinas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Ácido Salicílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA